BOAST

Performance Portability Using Meta-Programming and **Auto-Tuning**

Brice Videau², Kevin Pouget¹, Luigi Genovese², Thierry Deutsch ², Julien Bigot ⁵, Guillaume Latu ⁴, Virginie Grandgirard ⁴, Dimitri Komatitsch ³, Frédéric Desprez ¹, Jean-Francois Méhaut ¹

¹INRIA/LIG - CORSE, ²CEA - L Sim, ³CNRS, ⁴CEA - IRFM, ⁵CEA - Maison de la Simulation

> Journées SUCCES. Grenoble October 17, 2017

Scientific Application Portability

Limited Portability

- Huge codes (more than 100 000 lines), Written in FORTRAN or C++
- Collaborative efforts
- Use many different programming paradigms (OpenMP, OpenCL, CUDA, ...)

But Based on Computing Kernels

- Well defined parts of a program
- Compute intensive
- Prime target for optimization

Kernels Should Be Written

- In a portable manner
- In a way that raises developer productivity
- To present good performance

HPC Architecture Evolution

Very Rapid and Diverse, Top500:

- Sunway processor (TaihuLight)
- Intel processor + Xeon Phi (Tianhe-2)
- AMD processor + nVidia GPU (Titan)
- IBM BlueGene/Q (Sequoia)
- Fujitsu SPARC64 (K Computer)
- Intel processor + nVidia GPU (Tianhe-1)
- AMD processor (Jaguar)

Tomorrow?

- ARM + DSP?
- Intel Atom + FPGA?
- Quantum computing?

How to write kernels that could adapt to those architectures? (well maybe not quantum computing...)

Related Work

- Ad hoc autotuners (usually for libraries):
 - Atlas [6] (C macro processing)
 - SPIRAL [4] (DSL)
 - •
- Generic frameworks using annotation systems:
 - POET [7] (external annotation file)
 - Orio [3] (source annotation)
 - BEAST [1] (Python preprocessor based, embedded DSL for optimization space definition/pruning)
- Generic frameworks using embedded DSL:
 - Halide [5] (C++, not very generic, 2D stencil targeted)
 - Heterogeneous Programming Library [2] (C++)

- Kernel optimization workflow
- Usually performed by a knowledgeable developer

- Compilers perform optimizations
- Architecture specific or generic optimizations

- Performance data hint at source transformations
- Architecture specific or generic hints

- Multiplication of kernel versions and/or loss of versions
- Difficulty to benchmark versions against each-other

5 / 19

BOAST Workflow

- Meta-programming of optimizations in BOAST
- High level object oriented language

(A Parametrized Generator)

BOAST Workflow

Generate combination of optimizations

(A Parametrized Generator)

C, OpenCL, FORTRAN and CUDA are supported

BOAST Workflow

Compilation and analysis are automated

(A Parametrized Generator)

Selection of best version can also be automated

BOAST Architecture

(A Parametrized Generator)

Gysela 2d Advection

Gysela: Gyrokinetic Semi-Lagrangian Tokamak plasma simulation for fusion (ITER)

- Preparation steps
 - Extract 4 targeted routines from Gysela (subpart of 2d advection)
 - Change API of the 2d advection kernel only arrays of integers and floats for inputs/outputs (transmitting data structures is possible but more complex)
 - Define valid fake inputs for the kernel to design a regression test
 - Integrate the reference/original version into BOAST
- Install ruby & BOAST on 4 parallel machines
 - Easiest step
 - Get a working compilation/execution of the kernel: a bit more difficult
- Write a meta-program that prints a program
 - 1 Need to learn a little bit of ruby & BOAST
 - 2 Incremental approach: begin with internal routines then external
 - Identify what are the parameters of the auto-tuning
 - Integrate the best kernel version to the Gysela compilation process

Gysela 2d avection (2)

- Auto-tuning parameters that we chose
 - directive based inlining / BOAST driven inlining
 - BOAST driven loop unrolling
 - C or Fortran code generated
 - scan versions of gfortran/gcc/icc/ifort (module load)
 - loop blocking parameter (one of the most internal loop)
 - explicit vectorization: BOAST generates INTEL intrinsincs, e.g. ftmp1 = _mm256_setzero_pd(); ftmp2 = _mm256_setzero_pd(); ftmp1 = mm256 fmadd pd(base1 [0], mm256 load pd(&ftransp[(0) * (4)]); ftmp2 = _mm256_fmadd_pd(base1[0 + 1], _mm256_load_pd(&ftransp[(0 + 1) * (4)]), ftmp2);

Final result

 ruby code of 200 lines for the 2d advection kernel compared to original fortran code of 300 lines

Auto-tuning runs

- configure the list of modules/compilers for the parameter scan
- between 1 min and 20 min for the parameter scan on 1 machine

Introduction A Parametrized Generator Case Study Bibliography

Auto-tuning on INTEL Westmere (2011)

Auto-tuning for 2D advection Computing center at Marseille 12-cores node -

Speedup: 1.9

Introduction A Parametrized Generator (Case Study) Conclusions Bibliography

Auto-tuning on INTEL Sandy-Bridge (2012)

Auto-tuning for 2D advection Computing center at Orsay 16-cores node -Intel E5-2670 v1, 2.60GHz

Result of the scan (best parameters):

:lang: FORTRAN
:unroll: false
:force.inline: false
:intrinsic: false
:blocking.size: 2

:module: intel/15.0.0

Speedup: 1.7

Auto-tuning on INTEL Haswell (2015)

Auto-tuning for 2D advection Computing center at Montpellier 24-cores node -

Intel E5-2690 v3. 2.60 GHz

Result of the scan (best parameters):

:lang: FORTRAN :unroll: true :force.inline: true :intrinsic: false :blocking.size: 4

:module: intel/14.0.4.211

Speedup: 2.0

Auto-tuning on INTEL KNL (Phi 2016)

Auto-tuning for 2D advection Computing center at Montpellier 64-cores node -

Intel 7210 1 30GHz

Result of the scan (best parameters):

:lang: FORTRAN :unroll: true :force.inline: true :intrinsic: false

:blocking.size: 32 :module: intel/17.0 2D advection kernel, averaged execution time

Speedup: 3.6

Introduction A Parametrized Generator Case Study Bibliography

BigDFT

- Novel approach for DFT computation based on Daubechies wavelets
- Fortran and C code, MPI, OpenMP, supports CUDA and OpenCL
- Reference is hand tuned code on target architecture (Nehalem)
- Toward a BLAS-like library for wavelets

SPECFEM3D

- Seismic wave propagation simulator
- SPECFEM3D ported to OpenCL using BOAST
 - Unified code base (CUDA/OpenCL)
 - Refactoring: kernel code base reduced by 40%
 - Similar performance on NVIDIA Hardware
 - Non regression test for GPU kernels
- On the Mont-Blanc prototype:
 - OpenCL+MPI runs
 - Speedup of 3 for the GPU version

Conclusions

- BOAST v2.0 is released
- BOAST language features:
 - Unified C and FORTRAN with OpenMP support,
 - Unified OpenCL and CUDA support,
 - Support for vector programming.
- BOAST runtime features:
 - Generation of parametric kernels.
 - Parametric compilation,
 - Non-regression testing of kernels,
 - Benchmarking capabilities (PAPI support)
 - Co-execution and numa-aware capabilities (using hwloc)

Perspectives

- Ongoing work on other applications: Alya, dgtd nano3d
- Couple BOAST with other tools:
 - Parametric space pruners (speed up optimization).
 - Binary analysis (guide optimization, MAQAO),
 - Source to source transformation (improve optimization),
 - Binary transformation (improve optimization).
- Improve BOAST:
 - Improve the eDSL to make it more intuitive,
 - Better vector support,
 - Gather feedback.

And the Future?

New architectures:

- FPGAs:
 - Supported via OpenCL,
 - longer compile time,
 - parallel compilation?
- New vector architectures:
 - Intel KNL and onward: masked vector instructions,
 - ARM SVE: meta programming is in the instruction set.
- New memory architectures:
 - 3D stacked high performance memory (KNL, GPUs): new address space,
 - Non Volatile RAM: new address space again (relevant for computing kernels?)?

Introduction

Bibliography

Hartwig Anzt, Blake Haugen, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra. Experiences in autotuning matrix multiplication for energy minimization on gpus.
Concurrency and Computation: Practice and Experience, 27(17):5096-5113, 2015. cpe:3516.
Jorge F. Fabeiro, Diego Andrade, and Basilio B. Fraguela. Writing a performance-portable matrix multiplication. Parallel Comput., 52(C)65-77, February 2016.
Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan. Annotation-based empirical performance tuning using Orio. In Proceedings of the 23rd IEEE International Parallel & Distributed Processing Symposium, Rome, Italy, 2009. Also available as Preprint ANL/MCS-P1556-1008.
Markus Püschel, José MF Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson, David Padua, Manuela Veloso, and Robert W Johnson. SIRAL: a Generator for platform-adapted libraries of signal processing algorithms. International Journal of High Performance Computing Applications, 18(1):21-45, 2004.
Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. ACM SIGPLAN Notices, 48(6):519-530, 2013.
R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance costs in supporting persistently optimized BLAS. Software: Practice and Experience, 35(2):101–121, February 2005.
Qing Yi, Keith Seymour, Haihang You, Richard Vuduc, and Dan Quinlan. POET: Parameterized optimizations for empirical tuning. In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1–8. IEEE, 2007.