BOAST

Performance Portability Using Meta-Programming and
Auto-Tuning

Brice Videau 2, Kevin Pouget !, Luigi Genovese 2,

Thierry Deutsch 2 Julien Bigot 5 Guillaume Latu 4, Virginie
Grandgirard 4 Dimitri Komatitsch 3, Frédéric Desprez 1
Jean-Francois Méhaut !

YINRIA/LIG - CORSE, 2CEA - L_Sim, 3CNRS, *CEA - IRFM, 3CEA - Maison de
la Simulation

Journées SUCCES, Grenoble
October 17, 2017

BOAST

1/

A Parametrized Generator Case Study Conclusions Bibliography

Scientific Application Portability

Limited Portability

@ Huge codes (more than 100 000 lines), Written in FORTRAN or C++
@ Collaborative efforts

@ Use many different programming paradigms (OpenMP, OpenCL, CUDA, ...)

But Based on Computing Kernels Kernels Should Be Written

@ Well defined parts of a program @ In a portable manner
@ Compute intensive @ In a way that raises developer productivity

@ Prime target for optimization @ To present good performance

BOAST 2 /19

Introduction A Parametrized Generator Case Study Conclusions Bibliography

HPC Architecture Evolution

Very Rapid and Diverse, Top500:

@ Sunway processor (TaihuLight)

@ Intel processor 4+ Xeon Phi (Tianhe-2) Tomorrow?

@ AMD processor + nVidia GPU (Titan) @ ARM + DSP?

@ IBM BlueGene/Q (Sequoia) @ Intel Atom + FPGA?
@ Fujitsu SPARC64 (K Computer) @ Quantum computing?
@ |Intel processor + nVidia GPU (Tianhe-1)

@ AMD processor (Jaguar)

How to write kernels that could adapt to those architectures?
(well maybe not quantum computing...)

BOAST 3/19

Introduction A Parametrized Generator Case Study Conclusions Bibliography

Related Work

@ Ad hoc autotuners (usually for libraries):

e Atlas [6] (C macro processing)
o SPIRAL [4] (DSL)

o ...
@ Generic frameworks using annotation systems:

e POET [7] (external annotation file)

@ Orio [3] (source annotation)

e BEAST [1] (Python preprocessor based, embedded DSL for
optimization space definition/pruning)

@ Generic frameworks using embedded DSL:

e Halide [5] (C++, not very generic, 2D stencil targeted)
o Heterogeneous Programming Library [2] (C++)

BOAST 4 /19

Introduction (A Parametrized Generator) Case Study Conclusions Bibliography

Classical Tuning of Computing Kernels

Development Source Compilation Bi
1nas
Developer Code Ty
Optimization Performance
Analysis
Performance
data

@ Kernel optimization workflow

@ Usually performed by a knowledgeable developer

BOAST

5/19

Introduction (A Parametrized Generator) Case Study Conclusions Bibliography

Classical Tuning of Computing Kernels

Development Source Compilation .
Code Gee Binary
Mercurium
Optimizati OpenCL
ptimization Performance
Analysis
Performance
data

@ Compilers perform optimizations

@ Architecture specific or generic optimizations

BOAST 5 /19

Introduction

(A Parametrized Generator)

Case Study Conclusions

Classical Tuning of Computing Kernels

Development Source Compilation Bi
1nas
Code vy
Optimization Performance

MAQAO
HW Counters
Proprietary Tools

Analysis

Performance
data

@ Performance data hint at source transformations

@ Architecture specific or generic hints

BOAST

Bibliography

5/19

Introduction (A Parametrized Generator)

Case Study

Conclusions

Bibliography

Classical Tuning of Computing Kernels

Development Source Compilation Bi
1nas
Code vy
Optimization Performance
Developer .
Analysis
Performance
data

@ Multiplication of kernel versions and/or loss of versions

@ Difficulty to benchmark versions against each-other

BOAST

5/19

Introduction (A Parametrized Generator)

Case Study Conclusions

BOAST Workflow

Development Source
Code
Transformation
Generative Optimization
Source Code Developer

Compilation .
Binary
Performance
Analysis
Performance
data

@ Meta-programming of optimizations in BOAST

@ High level object oriented language

Bibliography

BOAST

6/19

Introduction (A Parametrized Generator)

BOAST Workflow

Development

Source
Code

Transformation
BOAST

Generative
Source Code

Optimization

Case Study

Conclusions

Compilation .
Binary
Performance
Analysis
Performance
data

@ Generate combination of optimizations

@ C, OpenCL, FORTRAN and CUDA are supported

Introduction (A Parametrized Generator) Case Study Conclusions Bibliography
BOAST Workflow
Development Source Compilation .
Code Gee Binary
Mercurium
Transformation OpenCL performance
Analysis MAQAO
Yy HW Counters
- . Proprietary Tools
Generative | Optimization | Performance Py
Source Code data
@ Compilation and analysis are automated
@ Selection of best version can also be automated
BOAST |6/ 19

Introduction (A Parametrized Generator) Case Study Conclusions Bibliography

BOAST Architecture

Select input
data

g language optimizations

‘B

3]

>

o0

£

=

&

i Select performance Select compiler
U

m metrics and options

BOAST

Introduction A Parametrized Generator Conclusions Bibliography
Gysela 2d Advection

Gysela: Gyrokinetic Semi-Lagrangian

Tokamak plasma simulation for fusion (ITER)
@ Preparation steps

o Extract 4 targeted routines from Gysela (subpart of 2d advection)
o Change API of the 2d advection kernel
only arrays of integers and floats for inputs/outputs
(transmitting data structures is possible but more complex)
o Define valid fake inputs for the kernel to design a regression test
o Integrate the reference/original version into BOAST

@ Install ruby & BOAST on 4 parallel machines

o Easiest step
o Get a working compilation/execution of the kernel: a bit more
difficult

@ Write a meta-program that prints a program

© Need to learn a little bit of ruby & BOAST

@ Incremental approach: begin with internal routines then external
@ Identify what are the parameters of the auto-tuning

@ Integrate the best kernel version to the Gysela compilation process

BOAST 8 /19

Introduction A Parametrized Generator Case Study Conclusions Bibliography

Gysela 2d avection (2)
@ Auto-tuning parameters that we chose

directive based inlining / BOAST driven inlining

BOAST driven loop unrolling

C or Fortran code generated

scan versions of gfortran/gcc/icc/ifort (module load)

loop blocking parameter (one of the most internal loop)
explicit vectorization: BOAST generates INTEL intrinsincs, e.g.

ftmpl = _mm256_setzero_pd();

ftmp2 = _mm256_setzero_pd();
ftmpl = _mm256_fmadd_pd(base1[0], _mm256_load_pd(&ftransp[(0) * (4)1);
ftmp2 = _mm256_fmadd_pd(basel[0 + 1], _mm256_load_pd(&ftransp[(0 + 1) * (4)1), ftmp2);

@ Final result

o ruby code of 200 lines for the 2d advection kernel
compared to original fortran code of 300 lines

@ Auto-tuning runs

o configure the list of modules/compilers for the parameter scan
@ between 1 min and 20 min for the parameter scan on 1 machine

BOAST

9/19

Introduction A Parametrized Generator Case Study Conclusions Bibliography

Auto-tuning on INTEL Westmere (2011)

Auto-tuning for 2D advection
Computing center at Marseille
12-cores node -

Intel X5675, 3.07GHz 2D advection kernel, averaged execution time
6.5¢-05 [

T T :
BOAST parameter scan / sorted o
reference execution time --------

6e-05

Nb of runs in this scan: 609 55005

Runs sorted from quickest to slowest
Result of the scan

(best parameters): 4.5¢-05

4e-05

e-05

:lang: FORTRAN
runroll: true

3.5e-05

:force.inline: true 3e-05
rintrinsic: false 2.56-05
:blocking.size: 4

:module: intel/16.0.2

2e-05

Speedup: 1.9

BOAST 10/19

Introduction A Parametrized Generator Case Study Conclusions Bibliography

Auto-tuning on INTEL Sandy-Bridge (2012)

Auto-tuning for 2D advection

Computing center at Orsay

16-cores node - : ‘ ‘
Intel E5-2670 Vl, 2.60GHz BOAST parameter scan / sorted ~ ©

reference execution time --------
4e-05)

2D advection kernel, averaged execution time

3.5¢-05
Result of the scan ¢

(best parameters): s
-

:lang: FORTRAN
:unroll: false
:force.inline: false
rintrinsic: false
:blocking.size: 2
:module: intel/15.0.0 1.5¢-05 ' ! ! ! ;

2.5e-05

2e-05

Speedup: 1.7

BOAST 11 /19

Introduction A Parametrized Generator Case Study Conclusions Bibliography

Auto-tuning on INTEL Haswell (2015)

Auto-tuning for 2D advection
Computing center at Montpellier

24-cores node - 2D advection kernel, averaged execution time
Intel E5-2690 V3v 2.60GHz BOAéT parameter‘ scan / sorteé [}
1005 reference execution time --------
e-05 4
Result of the scan 3.5¢-05 :

(best parameters):

3e-05
:lang: FORTRAN
runroll: true 2.5e-05
:force.inline: true
rintrinsic: false 2¢-05
:blocking.size: 4
:module: intel/14.0.4.211

1.5e-05

Speedup: 2.0

BOAST 12 /19

Introduction

A Parametrized Generator

Case Study

Conclusions Bibliography

Auto-tuning on INTEL KNL (Phi 2016)

Auto-tuning for 2D advection
Computing center at Montpellier
64-cores node -

Intel 7210 1.30GHz

Result of the scan
(best parameters):

:lang: FORTRAN
:unroll: true
:force.inline:
:intrinsic: false
:blocking.size: 32
:module: intel/17.0

true

Speedup: 3.6

0.00016

0.00014

0.00012

0.0001

8e-05

6e-05

4e-05

2e-05

2D advection kernel, averaged execution time

T T r : ;
BOAST parameter scan / sorted o
reference execution time -------- i

40 60 80 100 120 140 160

BOAST 13 /19

Introduction

A Parametrized Generator
BigDFT

Synthesys Speedup

function of unrolling factor

unroll

Novel approach for DFT computation based on Daubechies wavelets

Conclusions

---C
FORTRAN

—¥— C OpenMP

—a— FORTRAN OpenMP

Bibliography

Fortran and C code, MPI, OpenMP, supports CUDA and OpenCL

Reference is hand tuned code on target architecture (Nehalem)

Toward a BLAS-like library for wavelets

BOAST

14 /19

Introduction A Parametrized Generator Case Study Conclusions Bibliography

SPECFEM3D

Seismic wave propagation simulator
SPECFEM3D ported to OpenCL using BOAST

Unified code base (CUDA/OpenCL)
Refactoring: kernel code base reduced by 40%
Similar performance on NVIDIA Hardware
Non regression test for GPU kernels

(]
®© 66 6 o

On the Mont-Blanc prototype:

e OpenCL+MPI runs
@ Speedup of 3 for the GPU version

BOAST 15 /19

Introduction A Parametrized Generator Case Study Bibliography

Conclusions

@ BOAST v2.0 is released
@ BOAST language features:

o Unified C and FORTRAN with OpenMP support,
o Unified OpenCL and CUDA support,
@ Support for vector programming.

@ BOAST runtime features:

Generation of parametric kernels,

Parametric compilation,

Non-regression testing of kernels,

Benchmarking capabilities (PAPI support)

Co-execution and numa-aware capabilities (using hwloc)

BOAST

16 / 19

Introduction A Parametrized Generator Case Study Bibliography

Perspectives

@ Ongoing work on other applications: Alya, dgtd nano3d
@ Couple BOAST with other tools:

Parametric space pruners (speed up optimization),
Binary analysis (guide optimization, MAQAO),

Source to source transformation (improve optimization),
Binary transformation (improve optimization).

@ Improve BOAST:

o Improve the eDSL to make it more intuitive,
o Better vector support,
o Gather feedback.

BOAST 17 /19

Introduction A Parametrized Generator Case Study Bibliography

And the Future?

New architectures:
o FPGAs:

e Supported via OpenCL,
@ longer compile time,
o parallel compilation?

@ New vector architectures:

o Intel KNL and onward: masked vector instructions,
e ARM SVE: meta programming is in the instruction set.

@ New memory architectures:

o 3D stacked high performance memory (KNL, GPUs): new address
space,

o Non Volatile RAM: new address space again (relevant for
computing kernels?)?

BOAST

18 /19

Introduction A Parametrized Generator Case Study Conclusions

Bibliography

Hartwig Anzt, Blake Haugen, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra.
Experiences in autotuning matrix multiplication for energy minimization on gpus.

Concurrency and Computation: Practice and Experience, 27(17):5096-5113, 2015.

cpe.3516

Jorge F. Fabeiro, Diego Andrade, and Basilio B. Fraguela.
Writing a performance-portable matrix multiplication
Parallel Comput., 52(C):65-77, February 2016

Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan.

Annotation-based empirical performance tuning using Orio.

In Proceedings of the 23rd IEEE International Parallel & Distributed Processing Symposium, Rome, Italy, 2009.
Also available as Preprint ANL/MCS-P1556-1008.

Markus Piischel, José MF Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson, David Padua, Manuela Veloso, and
Robert W Johnson.

SPIRAL: A generator for platform-adapted libraries of signal processing algorithms.

International Journal of High Performance Computing Applications, 18(1):21-45, 2004

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines
ACM SIGPLAN Notices, 48(6):519-530, 2013.

R. Clint Whaley and Antoine Petitet.
N izing devel and mai e costs in supporting persistently optimized BLAS.
Software: Practice and Experience, 35(2):101-121, February 2005.

Qing Yi, Keith Seymour, Haihang You, Richard Vuduc, and Dan Quinlan.
POET: Parameterized optimizations for empirical tuning.
In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1-8. IEEE, 2007.

BOAST

19 /19

	Introduction
	Context
	Related Work

	A Parametrized Generator
	Case Study
	Conclusions
	Bibliography

