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Big Data Management

Apache-Hadoop
• Originally developed by Yahoo! 
• Running data-intensive applications on a large cluster of 

commodity machines (replication & scalabality)
• Two main components: HDFS & MapReduce
• Used in production by Facebook,IBM,Linkedin,Twitter, 

Yahoo! and many others

A Little Background on MapReduce-Hadoop
• Origin from Google
• Dataflow parallel programming model 
• Large-scale data processing on a cluster of servers (~ 80000 Peta bytes 

per day)
• Parallel execution of multiple jobs (map tasks + reduce tasks )
• Some examples of jobs:Web indexing, link graph, Distributed sort, Web access

statistics
• Hadoop, open source implementation
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Intermediate data management

• Generation of intermediate data (exceeding 1 PB per day)
• Write-once-read-many access model
• Job are I/O request from tasks (Multiple phases-overlap between tasks)
• A placement strategy of tamporary large data on datanodes of Hadoop servers
• Each map task has its in-memory buffer (circular buffer-100MB default)
• Parallel tasks writing on shared disk (< key, value > pairs)

Big Data Management

Spill file



16/10/20176

o Big Data Management from MapReduce-Hadoop processing
o Problem & Motivation
o Methodology
o Markov Model & Prediction Algorithm
o ExperimentationAssessment & Validation
o Summary

Outline



16/10/20177

Analyzing I/O behavior of intermediate data placement

• Performing the same I/O operations at the same time (on spill pahse)
• Influencing reduce phase immediately (running time of jobs)
• Performance of applications depends on efficient processing of large intermediate data (map and 

reduce tasks)

Problem & Motivation
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Why to predict intermediate data accesses behavior ?
• Aim: to analyse intermediate data accesses from trace history to improve I/O optimization, data 

placement and  scheduling strategies
• To prove that it is necessary to be able to predict I/O behavior of intermediate data patterns

• Predict exactly what ?  ➸ interfered block segments of spill file

No focus on I/O interference on spill behavior
• MapReduce modeling [1,2]
• Probabilistic and no statistical models for predicting I/O behavior [3, 4]

Markov model-based I/O behavior
• Predicting spatial and temporal I/O requests [5, 6, 7, 8]
• Markov property: the probability of finding a future state depends only on the current state
• One must determine what application behavior which corresponds to a state s, the total number of 

states N that can be fully described by its transition probability matrix P, and the allowed observations
• Each file block is represented by a state in the Markov model

Problem & Motivation
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Methodology
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Markov Prediction Model

§ Markov model based on sequence learning [9] (number of states)

§ Xt : state represents an I/O write request of spill phase on discrete state space E

§ I/O accesses from concurrent map operations (applications sharing storage resources)

§ |X| represents the I/O spill size

§ Number of states N: I/O which reflects the map output total size of P parallel map operations
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Markov Prediction Model

§ State transition: 

§ Transition matrix: 

§ Estimation of one-step transition probability
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Training Markov Model

§ Application tracing from map operations and I/O spill characteristics

§ Blktrace-based I/O tracing [10] (I/O size, LBA, PID, process name, thread-id and 
arguments)

§ Capture transition from block size and the inter-distance between segment spill requests
(I/O spill behavior )

§ mapreduce.task.io.sof t.factor = 0. Parameter of Hadoop specifying the number of I/O spill
segments on disk to be merged

§ For different system metric values, the Markov model is independent at time t

§ Contingency table of expected I/O write observations
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Markov Prediction Algorithm

• Greedy approach
• Large number of transitions
• All positive transitions 
• Parameters of a state (spill I/O)
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ExperimentationAssessment & 
Validation

§ Markov model accuracy on I/O spill block
§ Prediction algorithm on interfered spill segment

Trace-driven assessment

Accuracy prediction

§ I/O configuration of Hadoop servers for 
application running (one master server and four 
data servers)

§ Traces: training intermediate data and current
intermediate data sets
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Ø Wordcount
• Parse the input to find word boundaries
• A lot expensive temporary objetcs (string operation in java)
• CPU bound.
Ø Terasort
• TeraGen generate 1TB of data
• No compression
• Very I/O intensive
• Input and intermediate data are the same size
Ø Kmean
• Group items into k clusters
• I/O intensive
• Huge amount of intermediate clusters

ExperimentationAssessment & 
Validation

MapReduce application traces
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Prediction accuracy metric (markov model and algorithm)

• Correct Seq/interfI/O
• Current I/O Spill

Prediction error

• Mean Absolute Percent Error (MAPE)

ExperimentationAssessment & 
Validation
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Prediction accuracy of Markov model

ExperimentationAssessment & 
Validation

• Prediction error (MAPE)
• Prediction accuracy result of I/O spill size (in KB) 

for the model size (82%-95%)
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Prediction accuracy of the algoithm

• Interfered I/O spill from number of observations

• Interfered I/O spill from sequential and parallel
running

ExperimentationAssessment & 
Validation

96%
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Summary

• Intermediate data access patterns as a first-class citizen for big data 
processing
Ø Different behavior from applications (possibly very large amount of intermediate data )
Ø Minimizing E/S interference is critical for the overall application running

• Markov model for I/O spill behavior of Hadoop applications (original 
Mapreduce)
Ø Large observation to reduce loss of accuracy
Ø Offline model trainning for batch processing

• Additional research needed
Ø Try another model to use some online training 
Ø Expand workload pattern again
Ø Think about replication and faillure
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