DIRAC framework for distributed computing

L. Arrabito¹, J. Bregeon¹, P. Gay², V. Hamar³,
F. Hernandez³, S. Pop⁴, A. Tsaregorodtsev⁵

¹LUPM-IN2P3/CNRS, Montpellier

²Université de Bordeaux

³CC-IN2P3/CNRS, Lyon

⁴Creatis CNRS, Lyon

⁵CPPM-IN2P3-CNRS, Marseille

Journées SUCCESS 2017, 16th-17th October, Grenoble

- DIRAC overview
- Managing computing and storage resources
- Users communities
- DIRAC as a service
- Conclusions

The DIRAC interware

- A software framework for distributed computing
- Intermediates between users and resources
- Allows interoperability simplifying interfaces

The project

- Originally developed to support the production activities of the LHCb experiment at CERN (~10 years ago)
- Today is a general purpose software, targeting several large scientific communities
- Open source project developed by user communities for users
 - http://github.com/DIRACGrid/DIRAC
 - Publicly <u>documented</u>, active <u>assistance forum</u>, yearly <u>users workshops</u>, open <u>developers meetings</u>
- ▶ The DIRAC <u>consortium</u> as representing body
 - CERN, CNRS, University of Barcelona, KEK, IHEP, University of Montpellier as members
- In 2017 started as IN2P3 project to support further software generalization
 - CPPM, CC-IN2P3, LUPM, Creatis/CNRS, University of Bordeaux

The actors

European Grid Infrastructure

Open Science Grid

Main DIRAC components

- Workload Management System (WMS)
 - Job brokering with Pilot Jobs
 - Interoperability with different types of computing resources
- High level workflows Management System (Transformation System)
 - Support for automated massive data production and processing
- Data Management System
 - Storage management (access to various storage systems)
 - Data bookkeeping (File Catalog)
- These components should be installed on dedicated services to which clients connect

- Command line tools, Python API, RESTful interface
- Web portal

Workload Management System

- Implementation of Pilot Jobs
 - Introduced by the DIRAC project, now widely used in various WMS
 - Efficient usage of resources
- Transparent access to different types of resources
 - grids, clouds, clusters, etc.

Transformation System

- Conceived for Production Managers
- Enables automated workflow execution handling large datasets, e.g.:
 - Data Processing -> Merging -> Data Analysis -> Data Replication
- Workflows as chains of 'data transformations'
- Transformation = input data filter + recipe to create tasks (jobs or data operations)
- Transformations are created by the Production Manager

Tasks are automatically created through as soon as input data

are registered in the system

Fully data-driven system

Resources available via the DIRAC system

Computing Resources: HTC

- DIRAC was initially developed with the focus on accessing conventional Grid computing resources
 - It fully supports multiple grid middleware and infrastructures
 - ▶ EGI, WLCG, OSG, NorduGRID, etc
 - Other types of grids can be supported
 - As requested by users
- Standalone clusters
 - Access through SSH/GSISSH tunnel
 - Batch systems supported: LSF, SGE, PBS/Torque, Condor, OAR, SLURM
- BOINC Volunteer resources

Computing resources: Cloud

- VMDIRAC module
- Allows transparent access to various private or public cloud resources
 - Apache-libcloud
 - Rocci
 - EC2
 - Others are in the works
 - ▶ OCCI, Google, Azur, IBM, ...
 - Preferring RESTful interfaces
- Manages the whole VMs life cycle
 - Creation, Monitoring, Discarding

Computing Resources: HPC

- Multiple HPC centers are available for large scientific communities
 - E.g., HEP experiments started to have access to a number of HPC centers
 - Using traditional HTC applications
 - Filling in the gaps of empty slots
 - Including HPC into their data production systems
- Advantages of federating HPC centers
 - More users and applications for each center better efficiency of usage
 - Elastic usage: users can have more resources for a limited time period
- Collaboration with HPC centers to integrate them into a common framework under the DIRAC WMS control
 - France: Aix Marseille University
 - Russia: Dubna, NNGU, others
 - China: IHEP HPC center, Beijing

Computing Resources: HPC

- Unlike grid sites, HPC centers are not uniform
 - Different access protocols
 - Different user authentication methods
 - Different batch systems
 - Different connectivity to outside world
- DIRAC work in progress to overcome these differences
 - Support HPC access protocols (SSH, GSISSH, ARC, OAR, SLURM)
 - Methods for remote control of user payloads and data at the HPC centers
 - Site proxy/gateway services
 - User data import and export

User communities

High Energy Physics

Astrophysics

And many others

LHCb Collaboration

▶ More than 100K concurrent jobs in ~120 distinct sites

- This is not the limited by the system capacity, but by the available resources
- In needed, further optimizations to increase the capacity are possible
 - Hardware, database optimizations, service load balancing, etc.

DIRAC dedicated installations

- Belle II Collaboration, KEK
 - First use of clouds (Amazon) for data production
- ILC/CLIC detector Collaboration, Calice VO
 - DIRAC File Catalog was developed to meet the ILC/CLIC requirements
 - BES III, IHEP, China
 - Dataset management developed for the needs of BES III

CTA

 Contributing to Transformation System development enabling data-driven workflows

Geant4

- Validation of MC simulation software releases
- DIRAC evaluations by other experiments
 - LSST, Auger, TREND, Daya Bay, Juno, ELI, NICA, ...
 - Evaluations can be done with general purpose DIRAC services

EGI ACCOUNTING PORTAL

Normalised CPU time [units 1K.SI2K.Hours] by DATE and VO												
DATE	alice	atlas	belle	biomed	cms	compchem	ilc	Ihcb	virgo	vo.cta.in2p3.fr	Total	%
Nov 2015	83,043,071	213,187,021	29,633,040	2,992,249	107,998,028	812,409	3,051,240	44,495,710	365,193	5,203,790	490,781,751	8.60%
Dec 2015	81,681,064	167,642,164	30,755,315	2,771,463	81,200,999	1,197,402	10,250,775	42,772,247	4,370	9,643,804	427,919,603	7.50%
Jan 2016	100,472,899	212,596,116	8,254,706	2,221,994	99,768,667	2,869,544	3,904,455	32,614,451	329,113	8,746,790	471,778,735	8.27%
Feb 2016	80,340,391	202,531,157	48,965	1,312,309	100,330,129	1,220,127	2,704,948	44,547,976	1,962,465	5,563,528	440,561,995	7.72%
Mar 2016	108,810,699	172,663,251	3,412,262	2,286,939	75,113,354	1,623,540	2,049,130	83,154,401	1,917,611	1,539,919	452,571,106	7.93%
Apr 2016	111,707,745	211,516,946	496,969	1,622,314	67,855,621	1,970,394	3,051,624	78,821,567	3,517,152	3,079,316	483,639,648	8.47%
May 2016	88,434,699	229,055,135	457,771	3,055,283	64,161,648	3,990,478	4,366,309	70,550,242	11,311,493	669,299	476,052,357	8.34%
Jun 2016	91,963,895	220,222,321	10,039,317	1,375,916	104,040,606	1,755,334	2,097,169	66,545,602	2,558,741	1,103,183	501,702,084	8.79%
Jul 2016	113,408,142	187,198,001	3,614,046	2,152,445	104,373,741	1,614,892	1,596,155	65,898,735	8,005,698	7,794,153	495,656,008	8.69%
Aug 2016	88,278,412	212,942,846	34,225	6,500,219	51,366,225	3,474,177	5,538,912	72,803,805	2,919,127	5,410,036	449,267,984	7.87%
Sep 2016	88,164,653	309,040,532	7,314,602	514,897	90,018,815	2,602,763	3,297,430	106,365,999	1,770,213	6,487,567	615,577,471	10.79%
Oct 2016	68,902,764	167,532,717	1,528,430	467,733	82,329,281	1,301,416	5,324,702	71,019,670	2,752,272	104,325	401,263,310	7.03%
Total	1,105,208,434	2,506,128,207	95,589,648	27,273,761	1,028,557,114	24,432,476	47,232,849	779,590,405	37,413,448	55,345,710	5,706,772,052	
Percentage	19.37%	43.91%	1.68%	0.48%	18.02%	0.43%	0.83%	13.66%	0.66%	0.97%		

- ▶ 5 out of Top-10 EGI communities used heavily DIRAC for their payload management in the last year
 - ▶ lhcb, belle, biomed, ilc, vo.cta.in2p3.fr
 - compchem will likely join the club

Getting started

- For a full evaluation
 - Install a server instance dedicated to your community
- The easiest
 - Connect to a running **DIRAC service** (see next slides)
 - Just need to register and install the DIRAC client on your laptop
- Doc/Support
 - **Documentation**
 - http://diracgrid.org/
 - User Forum
 - https://groups.google.com/forum/?hl=en#!forum/diracgrid-forum

DIRAC as a service

DIRAC as a service

- DIRAC framework was updated to support multi-VO installations
 - Allows to provide better support for several small user communities with a single DIRAC instance
 - Keeps the costs of operating DIRAC under control
- Several services provided by national grid infrastructure
 - FG-DIRAC, France

- http://www.france-grilles.fr/catalogue-de-services/fg-dirac/
- ▶ GridPP, UK

DIRAC4EGI

- http://dirac.egi.eu/DIRAC/
- Starting from 2018 DIRAC becomes a Core Service of EGI
- Serving both Grid and FedCloud resources

FG-DIRAC service

- Joint effort to provide FG-DIRAC service
 - Hosted by CC-IN2P3

- Usage
 - ▶ 21 Virtual Organizations
 - robot users
 - □ VIP/GateLab Biomed
 - About 12 million jobs processed every year

Conclusions

- Distributed computing is no more something exotic, it is used in a daily work by users in various scientific domains
- DIRAC provides a framework for building distributed computing systems aggregating multiple types of computing and storage resources
- Several large scientific collaborations adopted DIRAC for their production systems. Multiple evaluations are ongoing
- Increasing number of projects providing 'DIRAC as a service' (multicommunity)
- In 2018 DIRAC will become an EGI core service, replacing gLite WMS
- DIRAC can help users to get started in the world of distributed computing and discover its full potential

Backup

Storage plugins

- Storage element abstraction with a client implementation for each access protocol
 - DIPS, SRM, XROOTD, RFIO, etc.
 - gfal2 based plugin gives access to all protocols supported by the library
 - ► HTTP, DCAP, WebDAV, S3, ...
- Each SE is seen by the clients as a logical entity
 - With some specific operational properties
 - SE's can be configured with multiple protocols

Managing VM life cycle

- ▶ VM creation through a CloudDirector (similar to grid jobs)
 - Based on Task Queue status
 - ☐ If there are waiting user payloads
 - □ VM properties corresponding to payload requirements
- VM contextualization
 - ▶ On the fly installation of DIRAC, CVMFS, ...
 - Starting as many pilots as they are cores (single core jobs)
- Starting the VM Monitor Agent
 - Monitor and report the VM state, VM heartbeats
 - ▶ Halt the VM in case of no activity
 - Getting instructions from the central service, e.g. to halt the VM
- VM Scheduler orchestrates spawning and halting virtual machines depending on the Task Queue status, Accounting history
 - Necessary for fair sharing of cloud resources
 - Work in progress

Accessing HPC resources

- Pilot submitted to the batch system through an (GSI)SSH tunnel
- Pilot communicates with the DIRAC service through the Gateway proxy service
- Output upload to the target SE through the SE proxy

Computing Resources: HPC

- HPC resources allow a rich description with respect to to traditional grid resources
 - DIRAC work in progress to develop a more elaborated model of their description with the corresponding payload matching mechanisms
 - Worker node micro-management
 - Single-core and multi-core applications
 - Multi-processor, multi-node applications are in the works

Computing Resources: HPC

- Multi-core job scheduling
- Pilots with partitionable internal slots
 - ▶ M-core Pilots pull N-core jobs (N<=M) until internal slots used up
 - ▶ Pilot is standard-size, can be whole-node, 4-node, 8-node....
 - Optimizing CPU efficiency

DIRAC4EGI service

- In "best effort" production since 2014
- Partners
 - Operated by EGI
 - Hosted by CYFRONET
 - DIRAC Project providing software, consultancy
- 10 Virtual Organizations
 - enmr.eu, vlemed, eiscat.se
 - fedcloud.egi.eu
 - training.egi.eu
- Usage
 - Workload Management solution
 - > 6 million jobs processed in the last year
 - Data Management solution
 - E.g. Eiscat 3D
- Starting from 2018 DIRAC becomes a Core Service of EGI
 - WMS replacement
 - Serving both Grid and FedCloud resources

DIRAC4EGI activity snapshot

